Winchester, UK - Researchers from Imperial College London and their European partners, including Volvo Car Corporation, are developing parts of a car's bodywork to enable it to double up as a battery source.
The researchers, which are part in a new Euros 3.4 million project, are developing a prototype material that can store and discharge electrical energy and which is also strong and lightweight enough to be used for car parts.
The material could be used in hybrid petrol/electric vehicles to make them lighter, more compact and more energy efficient, enabling drivers to travel for longer distances before needing to recharge their cars.
In addition, the researchers believe the material, which has been patented by Imperial, could potentially be used for the casings of many everyday objects such as mobile phones and computers, so that they would not need a separate battery. This would make such devices smaller, more lightweight and more portable.
The project co-ordinator, Dr Emile Greenhalgh, from the Department of Aeronautics at Imperial College London, said: “We are really excited about the potential of this new technology. We think the car of the future could be drawing power from its roof, its bonnet or even the door, thanks to our new composite material. Even the Sat Nav could be powered by its own casing. The future applications for this material don't stop there - you might have a mobile phone that is as thin as a credit card because it no longer needs a bulky battery, or a laptop that can draw energy from its casing so it can run for a longer time without recharging. We’re at the first stage of this project and there is a long way to go, but we think our composite material shows real promise.”
In the new project, the scientists are planning to develop the composite material so that it can be used to replace the metal flooring in the car boot, called the wheel well, which holds the spare wheel. Volvo is investigating the possibility of fitting this wheel well component into prototype cars for testing purposes. By replacing a metal wheel well with a composite equivalent could enable Volvo to reduce the number of batteries needed to power the electric motor and could lead to a 15 per cent reduction in the car's overall weight, which should improve the range of future hybrid cars.
The researchers say that the composite material that they are developing, which is made of carbon fibers and a polymer resin, will store and discharge large amounts of energy much more quickly than conventional batteries. In addition, the material does not use chemical processes, making it quicker to recharge than conventional batteries. Furthermore, this recharging process causes little degradation in the composite material, because it does not involve a chemical reaction, whereas conventional batteries degrade over time.
The material could be charged by plugging a hybrid car into household power supply. The researchers are also exploring other alternatives for charging it such as recycling energy created when a car brakes.
For the first stage of the project, the scientists are planning to further develop their composite material so that it can store more energy. The team will improve the material’s mechanical properties by growing carbon nanotubes on the surface of the carbon fibers, which should also increase the surface area of the material, which would improve its capacity to store more energy.
The research team is also planning to investigate the most effective method for manufacturing the composite material at an industrial level.
The three-year European Union funded project includes researchers from the Departments of Chemistry, Aeronautics and Chemical Engineering and Chemical Technology at Imperial College London. European academic and industrial partners include Swerea SICOMP, INASCO Hella, Chalmers, Advanced Composites Group, Nanocyl, Volvo Car Corporation, Bundesanstalt Fur Materialforschung undprufung, ETC Battery and Fuel Cells Sweden. >
No comments:
Post a Comment